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Objective:  

Improve AttnGAN in terms of textual understanding and efficiency 

Results: 

1. Developed a novel architecture called Trans_AttnGAN. Integrated a pre-trained 

BERT model for generating more contextually accurate sentences and word 

embeddings. Designed a novel Soft Alignment Loss, leveraging a pre-trained image 

captioning model (BLIP) followed by a BERT to generate fine-grained guidance in 

sentence and word level. 
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Trans_AttnGAN. 

 

3. Verified that Trans_AttnGAN achieved comparable performance to AttnGAN with 
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Abstract 

This project introduces Trans-AttnGAN, a novel text-to-image generation model that significantly 

refines its predecessor, AttnGAN. With a transformer-based pre-trained model BERT, Trans-

AttnGAN can achieve more nuanced and contextually accurate interpretation of textual descriptions, 

thereby enhancing the quality and semantic coherence of the generated images. In addition, a novel 

Soft Alignment Loss is employed to replace AttnGAN's computationally demanding Deep Attentional 

Multimodal Similarity Model (DAMSM), which greatly shrinks the training time of AttnGAN. In our 

experiment, we verify that Trans-AttnGAN achieves comparable performance to AttnGAN in roughly 

half the total training time on the CUB-200 dataset, marking a significant improvement in training 

efficiency.  
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Chapter 1. Introduction 

Text-to-image generation is a challenging task that encompasses topics like Natural Language 

Processing (NLP), Computer Vision (CV) and multimodality learning. This interdisciplinary field 

has many fantastic applications, such as digital art production and advertisement poster generation 

[1, 2, 3].  

 

Many text-to-image models are based on the Generative Adversarial Networks (GANs) invented 

by I. Goodfellow et al. [4]. AttnGAN, proposed by T. Xu et al., is a milestone of such 

implementation. By designing an attentional generative network for multi-stage image generation 

and a Deep Attentional Multimodal Similarity Model (DAMSM) for fine-grained image-text 

matching loss, it has shown prominent capabilities to generate realistic images that can reflect 

detailed information in the text prompts [5].  

 

While AttnGAN establishes a benchmark in text-to-image synthesis, it presents room for 

enhancement, particularly in the realms of textual understanding and training efficiency. In terms 

of textual understanding, AttnGAN employs Long Short-Term Memory (LSTM) [6] as its text 

encoder, generating sentence and word embeddings for the attention mechanism. However, LSTM 

networks have inherent limitations in capturing the more nuanced, context-dependent features of 

the language, especially compared to more advanced models like transformers [7], which may 

bottleneck the performance of AttnGAN. In terms of training efficiency, AttnGAN introduces a 

Deep Attentional Multimodal Similarity Model (DAMSM) to calculate a fine-grained loss to 

provide sentence and word-level guidance to the generator. However, DAMSM needs pre-training 

for at least 200 epochs, which is time-consuming and computationally demanding. 
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In this project, we propose trans_AttnGAN, effectively addressing the two challenges that 

AttnGAN is facing, further improving its overall performance. The overall architecture of the 

trans_AttnGAN is shown in Figure 1. Firstly, we replace the LSTM in AttnGAN with a pre-trained 

transformer model, BERT [8], to generate more contextually accurate sentence and word 

embeddings for the Attentional Generative Network. Furthermore, we replace the computationally 

intensive DAMSM Loss in AttnGAN with a lightweight Soft Alignment Loss. In this novel 

approach, a pre-trained image captioning model BLIP [9] is used to first transform the images back 

into descriptive captions. Subsequently, a pre-trained BERT transformer is employed to convert 

these generated captions into meaningful sentence and word features. Finally, cosine similarity 

scores between the real captions and the generated captions are calculated in both sentence and 

word levels to measure how closely the generated images align with the text prompts.  

 

As we use pre-trained models, the proposed trans-AttnGAN requires less training time and 

computational resources while retaining the performance as compared to the AttnGAN. Our code 

is available at https://github.com/IUboyfriend/trans_AttnGAN. 

 

Figure 1. Architecture of the proposed trans_AttnGAN 

https://github.com/IUboyfriend/trans_AttnGAN
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Chapter 2. Related Work 

2.1 Text-to-Image Generation 

Generating high-quality images from text prompts is a challenging and complex task. It has 

achieved remarkable progress with the recent advancement of a variety of deep generative models. 

For example, Reed et al. used conditional PixelCNN to create images from text by a multi-scale 

model structure [10]. Mansimov et al. proposed alignDRAW, an extension of the Deep Recurrent 

Attention Writer (DRAW), which iteratively constructs image patches while focusing on relevant 

words in text descriptions [11]. Nguyen et al. introduced an approximate Langevin sampling 

method for text-conditioned image generation [12]. Among all the generative models, GANs are 

one of the major methods that have shown outstanding performance in text-to-image generation. 

 

2.2 Generative Adversarial Networks (GANs) 

In GANs, a generator (G) and a discriminator (D) are trained in an adversarial manner, improving 

themselves against each other progressively [4]. The generator (G) starts with random noise and 

tries to generate samples that resemble the real data distribution to fool the discriminator, while 

the discriminator (D) attempts to distinguish the real data and the fake data produced by the 

generator. The min-max objective function is modeled as minGmaxDV(D,G)= Ex∼pdata(x)[logD(x)] + 

Ez∼pz(z)[log(1−D(G(z)))]. Ex∼pdata(x)[logD(x)] represents the expectation of the discriminator's 

estimates for real data x. The discriminator tries to maximize this term to show great confidence 

in its recognition and affirmation of real data. Ez∼pz(z)[log(1−D(G(z))) represents the expectation 

of the discriminator's estimates for data produced by the generator. The generator tries to minimize 

this term, making the discriminator believe the generated samples are real, while the discriminator 

tries to maximize this term, having strong confidence in recognizing the fake data. 
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2.3 AttnGAN 

 

Figure 2. Architecture of AttnGAN 

2.3.1 Attentional Generative Network 

As shown in Figure 2, AttnGAN comprises multiple generators (G0, G1, …, Gm-1), generating 

images from a smaller scale to a larger scale. These generators are fed with the corresponding 

hidden states (h0, h1, …, hm-1). 

 

To get the first hidden state h0, a noise vector z is concatenated with the conditioning augmentation 

(Fca) of a sentence vector 𝑒̅, and then fed to the reshaping network F0 (Eq.1).  

(1) 

 

Other hidden states hi is computed from the last hidden states hi-1 and an attention-driven word-

context matrix. The word context matrix is generated by the attention model Fi
attn fed by the word 

features e produced by the text encoder and the last hidden state hi-1 (Eq.2).  

(2) 



 13 

For the jth sub-region (a column in the hidden state), its word-context vector cj is calculated by 

(Eq.3), where 𝑒′i is the reshaped feature vector of the ith word, βj,i is the attention weight indicating 

how much the model attends to the ith word when generating the jth sub-region. 

 

                            (3) 

 

Finally, we combine the word-context vectors for N sub-regions to get the word-context matrix for 

the whole image (Eq.4): 

         (4) 

 

Once the hidden state is ready, it is fed to the generator Gi to generate the image of the 

corresponding scale. The generator loss and the discriminator loss are defined as (Eq.5,6), where 

𝑥𝑖  is from the true image distribution pdata-i while 𝑥̂ i is from the model distribution pGi. The 

unconditional loss determines whether the image is real or fake, while the conditional loss 

determines whether the image and the sentence match or not. 

  (5) 

    (6) 
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2.3.2 Deep Attentional Multimodal Similarity Model (DAMSM) 

The DAMSM consists of a text encoder (LSTM) and an image encoder (CNN) that maps the words 

and the images into a common space and then calculates the image-text similarity at the word and 

sentence level to give fine-grained guidance for image generation. 

 

Firstly, the LSTM turns the caption into the sentence feature vector 𝑒̅ and word feature matrix 𝑒, 

and the CNN turns the image into the global image feature vector 𝑣̅ and the local image feature 

matrix v. 

 

Subsequently, a similarity matrix s for all possible pairs of words and the image sub-regions is 

calculated and normalized 𝑠̅, where i represents the ith word and j represents the jth sub-region of 

the image (Eq.7). 

 

                 (7) 

 

Then, a region-context-vector for each word is computed as the weighted sum overall regional 

visual vector vj (Eq.8).  

          (8) 

  

Finally, the relevance between the ith word and the whole image is represented by the cosine 

similarity between ci and ei (Eq.9). The attention-driven image-text matching score between the 

entire image Q and the whole text descript D is defined in (Eq.10). 
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   (9) 

(10) 

 

In a batch of image-sentence pairs {(𝑄𝑖, 𝐷𝑖)}𝑖=1
𝑀 , only 𝐷𝑖 matches with 𝑄𝑖, and all other M-1 

sentences are treated as mismatching descriptions. Hence, we have two posterior probabilities of 

the sentence matching with the image (Eq.11): 

 

    (11) 

 

Then the two word-level losses (𝐿1
𝑤, 𝐿2

𝑤) are defined as (Eq.12): 

 

         (12) 

 

If we redefine (Eq.10) by (Eq.13), where 𝑣̅ is the global image feature vector and 𝑒̅ is the global 

sentence feature vector, and substitute it into (Eq.11 and 12), we will have two sentence-level 

losses (𝐿1
𝑠 , 𝐿2

𝑠 ). 

         (13) 

 

Finally, the DAMSM loss I defined as (Eq.14): 

                      (14) 
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The generator loss is defined as (Eq.15), where m is the number of the generators and λ is a 

hyperparameter weighting the importance of the DAMSM. 

       (15) 

 

2.4 Inception Score for Evaluation 

Inception Score is derived from a pre-trained Inception network and evaluates the generative 

model from two aspects [13]. The first aspect is the quality of individual images. The Inception 

network will predict the class label of each generated image where the classification confidence 

indicates their recognizability. The second aspect is the diversity of the entire set. It is measured 

by calculating the entropy of the class distributions. If most of the generated images are similar, 

the class distribution would have low entropy. Conversely, if the generated images are diverse, the 

entropy will be high. 
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Chapter 3 Trans-AttnGAN 

3.1 Rationale and Development of Trans-AttnGAN Design 

Initially, motivated by the advantages of the transformers over LSTMs in textual understanding 

and embedding generation, we aim to replace the text encoder of AttnGAN, which is a bi-

directional LSTM, with a transformer BERT. However, in the experiment, we encountered 

significant challenges that led us to reconsider this scheme for the following reasons. 

 

Firstly, changing to BERT leads to much more time and computational power consumption. In the 

original AttnGAN, pre-training of DAMSM merely requires 130.34ms (time for a batch) * 553 

(number of batches in an epoch) = 72.08s for one epoch in average shown in Figure 3. However, 

if changing LSTM to BERT, we need 1181.39ms * 553 = 653.31s for one epoch shown in Figure 

4, approximately 9 times more than the LSTM. The DAMSM needs at least 200 epochs of pre-

training, as raised by the author of AttnGAN [5], which means pre-training a usable DAMSM will 

cost over 36 hours, making it very difficult to fine-tune the DAMSM with BERT.  

 

Secondly, the validation loss of the DAMSM with BERT is significantly higher than that of the 

original architecture, as shown in Figures 3 and 4, in both sentence and word levels. We also tried 

to freeze previous layers or use a distilled version of the transformer; although we can halve the 

training time, the error is still higher than the original AttnGAN, which indicates that the 

transformer is not fit for the DAMSM architecture. 

 

 

Figure 3. Training time and validation loss of DAMSM with LSTM 
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Figure 4. Training time and validation loss of DAMSM with BERT 

 

However, changing the text encoder of AttnGAN to a transformer is still meaningful because the 

Attentional Generative Network leverages the sentence and word embeddings when the attention 

models produce the word-context vectors. BERT, known for its effectiveness in capturing 

contextual relationships within text, can produce more nuanced and contextually rich embeddings. 

Hence, we design the Trans_AttnGAN with a novel Soft Alignment Loss to replace the DAMSM 

to provide fine-grained sentence and word-level guidance. Trans_AttnGAN enables using BERT 

to generate more detailed and accurate sentence and word embeddings while discarding the pre-

training stage that the original AttnGAN needs, greatly improving the performance and efficiency 

of AttnGAN. 

 

3.2 Trans_AttnGAN Architecture 

3.2.1 BERT text encoder 

A pre-trained BERT named “bert-base-uncased” developed by Hugging Face [14] is used as the 

text encoder. It consists of 12 transformer blocks and 12 elf-attention heads, making it effective in 

finding deep semantic relationships and generating meaningful sentence and word embeddings.  

 

The captions are first tokenized by a BERT tokenizer and padded to the longest sequence in the 

batch for efficient batch processing. Then, we freeze the BERT and feed the tokenized captions to 

it, which means the BERT is for inference only, not updating its pre-trained weights to save time 
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and computational resources. Next, we extract the last hidden state to obtain the sentence and word 

embeddings. We use the starting token [CLS] for sentence embeddings since it is trained through 

tasks like Next Sentence Prediction and encapsulates the entire sentence’s context. The remaining 

embeddings, excluding the ending token [SEP] and the padding token, are considered word 

embeddings. Finally, we transform a batch of text captions into a tensor called target_sent 

(sentence embeddings) of shape [batch_size, hidden_size = 768] and a tensor called target_word 

(word embeddings) of shape [batch_size, hidden_size = 768, target_seq_length], where the 

hidden_size represents the dimensionality of embeddings in BERT and the target_seq_length 

represents the length of the longest captions in the batch. 

 

3.2.2 Image Captioning Model BLIP and a Subsequent BERT 

A pre-trained image captioning model BLIP named “Salesforce/blip-image-captioning-base” 

developed by Hugging Face [15] is employed to generate descriptive captions from the generated 

images before calculating the “Soft Alignment Loss”. It effectively merges visual data with textual 

information using a combination of Vision Transformers and language models, tailored for 

generating accurate and context-aware captions.  

 

During training, firstly, (Eq.16) is used to normalize the generated image from [-1,1] to [0,255], 

making them fit for the input picture format png. Then the normalized images are fed into a BLIP 

with all parameters frozen to generate descriptions of the fake images. Finally, the descriptions are 

input to a BERT to generate the sentence feature named pred_sent of size [batch_size, hidden_size 

= 768], and the word features named pred_word of size [batch_size, hidden_size = 768, 
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pred_seq_length], where the pred_seq_length represents the length of the longest generated 

captions in the batch. 

                    (16) 

 

3.2.3 Soft Alignment Loss 

Sentence-Level loss:  

First, the two sentence embeddings, the target_sent and pred_sent, undergo L2 normalization to 

have norms equal to 1 so that the norms can be neglected in the denominator of the cosine similarity. 

Then, the cosine similarity and the sentence-level loss are calculated, as shown in (Eq.17). 

                 (17) 

Word-Level loss:  

The word-level loss intends to check whether specific words in the target caption are reflected in 

the generated captions. This is crucial for ensuring that key features in the prompts are captured in 

the generated images.  

 

Similar to the sentence-level loss, the two word-level embeddings target_word and pred_word first 

undergo the L2 normalization. The attention masks are then applied to exclude all irrelevant tokens 

like ending and padding tokens. Next, batch matrix multiplication is performed to compute a 

cosine similarity matrix cos_sim_word (Eq.18). The shape of this similarity matrix is [batch_size, 

pred_seq_len, target_seq_len]. 

     (18) 
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Then we apply a Softmax function along the pred_seq_len dimension of the similarity matrix 

(Eq.19). The max value in each row is selected as the confidence score (Eq.20), aiming to find the 

most similar word in the pred_seq_len for each word in the target_seq_len.  

 (19) 

  (20) 

 

Finally, these confidence scores are summed (Eq.21) and averaged (Eq.22) for each target caption. 

The word-level loss is modeled as (Eq.23). 

 (21) 

 (22) 

          (23) 

 

The objective function of the proposed Trans_AttnGAN’s attentional generative network is 

defined as (Eq.24), where 𝛼 𝑎𝑛𝑑 𝛽 are two hyperparameters determine the relevant importance 

of the two proposed losses, and 𝜆 is the hyperparameter determines the relevant importance of 

the proposed Soft Alignment Loss.  

               (24) 
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Chapter 4 Experiment 

4.1 Dataset 

In our experiment, we use the Caltech-UCSD Birds-200-2011 (CUB) dataset, which contains 

11788 images (8,855 for training and 2,933 for testing) of 200 bird species [16]. Each image is 

assigned ten captions as the descriptions. For example, figures 5 and 6 show the captions and the 

corresponding image for the first sample in the class “Black_footed_Albatross”. 

 

 

Figure 5. Captions for the first sample in the class “Black_footed_Albatross.” 

 

 

Figure 6. The first image in class “Black_footed_Albatross.” 

 

4.2 Fine-Tune the BLIP Image Captioning Model 

Though pre-trained on a large dataset, the BLIP fails to generate descriptive captions for the bird 

images. To generate descriptions that can capture the key features of the generated images, fine-

tuning is needed. Because the BLIP has comprehensive prior knowledge, only minor efforts are 
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needed in fine-tuning. In our experiment, we try different learning rates, batch sizes and number 

of training samples. We find that 400 batches (batch size = 8) with learning rate = 1e - 6 is enough 

to gain a satisfying BLIP, which saves much time compared to the 200-epoch pre-training of the 

DAMSM of the AttnGAN. The comparison of the original BLIP and the fine-tuned BLIP is shown 

in Table 1. The results of the fine-tuned BLIP are shown in Table 2. 

 

 Without fine-tuning With fine-tuning 

“A small bird perched on a 

branch of a tree.” 

“This bird has wings that are 

brown and a white belly.” 

Table 1. Comparison of the BLIPs with and without fine-tuning 

 

Image Real Caption Generated Caption 

 

“The bird has a grey side and 

breast as well as a brown 

crown.” 

“A small bird with a grey 

belly and a brown crown.” 

 

“The bird has a brown body 

and a pointed break which 

color brighter than the rest of 

the body.” 

“This bird has wings that are 

brown and has a long pointy 

beak.” 
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“This is a small dirty yellow 

and brown bird with a red and 

brown crown.” 

“This bird has wings that are 

brown and yellow and has a 

red crown.” 

Table 2. Comparison between the real captions and captions generated by the fine-tuned BLIP 

 

4.3 Component Analysis 

In this section, we quantitatively evaluate Trans_GAN variants with the Inception Score to define 

the best sets of hyperparameters. The results are shown in Table 3. To save time, we only trained 

all the variants for 100 epochs. 

 

Hyperparameters Inception Score 

λ = 0 - 3.78 ± 0.03 

λ = 10 𝜶 = 𝟎. 𝟕, 𝜷 = 𝟎. 𝟑 3.98 ± 0.07 

λ = 10 𝛼 = 0.5, 𝛽 = 0.5 3.86 ± 0.06 

λ = 10 𝛼 = 0.3, 𝛽 = 0.7 3.83 ± 0.04 

λ = 50 𝛼 = 0.7, 𝛽 = 0.3 3.74 ± 0.05 

λ = 50 𝛼 = 0.5, 𝛽 = 0.5 3.69 ± 0.02 

λ = 50 𝛼 = 0.3, 𝛽 = 0.7 3.67 ± 0.02 

Table 3. Hyperparameter fine-tuning of Trans_AttnGAN (100 epochs) 

 

From the above table, we can verify that our proposed Soft Alignment Loss has a positive impact 

on the quality of the generated image. This is because the parameter λ controls the relevant 



 25 

importance of the Soft Alignment Loss to the total loss. When it equals zero, the inception score 

is lower than that of the experiment groups with λ = 10. Moreover, we can identify the best sets of 

hyperparameters, which are λ = 10, α = 0.7, β = 0.3 for Trans_AttnGAN. We trained the TransGAN 

with the above set of hyperparameters for 200 epochs and got an inception score of 4.28 ± 0.03. 

 

4.4 Qualitative Evaluation of Trans_AttnGAN 

In this section, we visualize the results of the best Trans_AttnGAN (λ = 10, α = 0.7, β = 0.3, epoch 

= 200) to demonstrate its working flow and capacity. 

 

Table 4. shows the outputs of the three generators of Trans_AttnGAN, visualizing how 

Trans_AttnGAN generates images by gradually refining the lower-resolution version to a higher 

resolution. 

 

Caption: This bird has wings that are blue and black and has a red belly. 

   

Table 4. Three-level generation results of Trans_AttnGAN 

 

Table 5. shows how the performance of Trans_AttnGAN improves throughout training epochs. 
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Epoch 1 Epoch 25 Epoch 50 

   

Epoch 100 Epoch 150 Epoch 200 

   

Table 5. Results of Trans_AttnGAN throughout training epochs 

 

Table 6. shows the Trans_AttnGAN is able to generate diverse images adapting to the most 

attended words in the captions. 

 

The bird has wings that are blue and has a red belly. 

     

The bird has wings that are black and has a white belly. 
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The bird has wings that are grey and a yellow belly. 

     

Table 6. Results of Trans_AttnGAN when changing the most attended words 

 

4.5 Comparison with AttnGAN 

We compare Trans_AttnGAN with the best AttnGAN (λ =5, epoch = 600) mentioned in the paper 

[5]. Qualitatively, we show the first four outputs of the Trans_AttnGAN and the AttnGAN for the 

same input in Table 7. 

 

Trans_AttnGAN AttnGAN 

This bird is black and white and has a very short beak. 
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This bird has a red crown with grey wings. 

  

  

    

This bird is yellow with a short beak and a long tail. 

    

    

Table 7. Comparison of Trans_GAN and AttnGAN 

 

Table 7 reveals that, despite the presence of some unsuccessful images for both models, the 
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majority of images are realistic and rich in detail. Notably, both models effectively interpret and 

incorporate important textual prompts, like “long tail” or “red crown”, into their generated images, 

even in the failed generations. The comparative analysis from this sample set indicates that 

Trans_GAN’s performance is on par with that of AttnGAN. 

 

Quantitatively, the Inception score of the best AttnGAN mentioned in the paper [5] is 4.36 ± 0.03, 

which is slightly better than our proposed Trans_AttnGAN’s 4.28 ± 0.03. However, as Table 8. 

shows, the AttnGAN is trained for 600 epochs with 200 epochs of pre-training of DAMSM, which 

requires 200 * 72.08 = 14,416s for pre-training DAMSM and 600 * 138 * 5.97 = 494,316s for 

training, in total 14,416 + 494,316 = 508,732s (approximately 6 days). In comparison, the proposed 

Trans_AttnGAN requires 400 * 18.12 = 7,248s for fine-tuning the BLIP and 200 * 138 * 9.50 = 

262,200s for training, in total 7,248 + 262,200 = 269,448 s (approximately 3 days), which sees a 

significant increase in the training efficiency. Due to the time limitation, we do not train 

Trans_AttnGAN for 600 epochs. However, as shown in Figure 7, there is an increasing trend of 

the inception score of the Trans_AttnGAN, indicating that Trans_AttnGAN is very likely to 

outperform AttnGAN if training for more epochs. 

 

Model Pre-training (batch 

size = 16) 

(553 batch/epoch) 

(RTX 4060) 

Training  

(batch size = 64) 

(138 batch/epoch) 

(RTX 3090) 

Final 

Inception 

Score 

Trans_AttnGAN 400 batches  

(18.12s/batch) 

200 epochs 

(9.50s/batch) 

4.28 ± 0.03 
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AttnGAN 200 epochs (72.08s/ 

epoch) 

600 epochs 

(5.97s/batch) 

4.36 ± 0.03 

Table 8. Training time comparison between the AttnGAN and Trans_AttnGAN 

 

 

Figure 7. Inception Score of Trans_AttnGAN throughout epochs (sampled every 25 epochs) 
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Chapter 5 Conclusion 

In this final year project, we introduced Trans-AttnGAN, a revised version of AttnGAN for text-

to-image generation. The core innovation of Trans_AttnGAN employs BERT for enhanced textual 

understanding and a novel Soft Alignment Loss to replace the complex Deep Attentional 

Multimodal Similarity Model (DAMSM), thus greatly improving the training efficiency while 

maintaining high-quality image generation. Impressively, Trans_AttnGAN requires only about 

half the total training time compared to AttnGAN to achieve similar results. This reduction in 

training duration is a substantial improvement, especially in resource-constrained environments. 

If given enough time, Trans_AttnGAN is very likely to outperform AttnGAN since BERT can 

provide more fine-grained textual guidance to the generators than LSTM. 

 

While we celebrate the successes of Trans_AttnGAN, we also recognize potential areas for 

enhancement. First, the Soft Alignment Loss focuses on the “single word” level, which may ignore 

important “phrase-level” information. For example, in a caption like “the bird has a red head”, the 

Soft Alignment Loss only checks whether the word “red” is reflected in the generated image but 

doesn’t explicitly ensure that the red color is attributed to the bird's head. Although our experiments 

demonstrate that the Trans_AttnGAN often successfully generates images with such details thanks 

to the descriptive sentence embedding generated by the BERT, the Soft Alignment Loss can be 

refined to provide more accurate “phrase-level” guidance. Secondly, currently we can only 

generate images of resolution 256 * 256, which is relatively low for practical use. If having time 

and enough computational power, we can stack more levels of generators to achieve a higher 

resolution. 
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